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Variational approximations for the exponential random graph model

Angelo Mele, Johns Hopkins University
Lingjiong Zhu, University of Minnesota

We study a model of sequential network formation that converges to the exponential random graph model
(ERGM). The likelihood of the model is known up to an intractable normalizing constant, which is usu-
ally approximated using simulation methods. However, some of these methods are computationally very
expensive and may fail to converge in reasonable time for large networks applications. In this paper, we
leverage and extend recent results from the literature on large deviations for random graphs to provide an
algorithm for estimation of the model that avoids simulations. Our method uses a variational mean-field ap-
proximation of the likelihood: we show that the approximation becomes exact as the number of nodes grows
to infinity, providing a consistent estimate of the normalizing constant. We also provide analytical bounds
for finite networks and show that we can exploit homophily to simplify the variational approximation. This
method is tractable and scales to large networks.

Categories and Subject Descriptors: J.4 [Social and Behavioral Sciences]: Economics, Sociology; G.2.2
[Graph theory]: Network problems; G.3 [Probability and statistics]: Statistical Computing; I.5.1 [Pat-
tern Recognition]: Statistical Models

Additional Key Words and Phrases: network formation, ERGM, mean-field approximations, estimation,
graph limits, large deviations

1. INTRODUCTION
We study a model of strategic network formation with heterogeneous players, that
converges to the exponential random graph model. The likelihood of observing a spe-
cific network is known up to an intractable normalizing constant, which is infeasible
to compute. The standard estimation method uses a MCMC algorithm that generates
samples from the ERGM to provide an estimate of the normalizing constant.1 How-
ever, recent work by Bhamidi et al. [2011] has shown that such simulation methods
may have exponentially slow convergence.

We provide an alternative tractable method of estimation for a large class of expo-
nential random graph models. We show that a mean-field variational approximation
of the likelihood provides a lower bound for the normalizing constant.2

The main theorem of the paper shows that this lower bound becomes exact as the
network size n grows large. To obtain the latter statement we extend recent results
from the large deviations literature for random graphs.3 We also provide exact bounds

1Snijders [2002], Caimo and Friel [2010], Mele [2011], Geyer and Thompson [1992]
2Wainwright and Jordan [2008], Bishop [2006].
3See Chatterjee and Varadhan [2011], Chatterjee and Diaconis [2013], Chatterjee and Dembo [2014]
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x:2 A. Mele and L. Zhu

for the approximation error of the variational mean-field for fixed n.4 Lastly, we show
that when the model features (extreme) homophily, we can approximate the intractable
constant by solving independent univariate maximization problems. Our estimation
method is tractable and scalable for large networks.

2. THEORETICAL MODEL
There is a population of n players (the nodes), characterized by an exogenous type τi:
this vector can contain age, race, gender, income, etc. We collect all τi’s in a matrix τ .
The network’s adjacency matrix g has entries gij = 1 if i and j are linked; and gij = 0
otherwise. The network is undirected, i.e. gij = gji, and gii = 0, for all i’s.5 The utility
of player i is

ui(g, τ) =

n∑
j=1

αijgij +
β

n

n∑
j=1

n∑
k=1

gijgjk, (1)

where αij := α(τi, τj) are symmetric. The utility of player i depends on the number of
direct links, each weighted according to a function α of the types τ . Players also care
about the number of links that each of their direct contacts have formed.6

The network formation follows a sequential best-response dynamics. In each period
t, a pair of players is selected from the population with probability ρij . Upon meeting,
the pair decides whether to form a link gij by maximizing the sum of their utility.
Players are myopic: when they form a new link, they do not consider the effect of that
link on the future evolution of the network.
We make the following assumptions.

ASSUMPTION 2.1. The meeting process does not depend on the state of the network,
and ρij > 0 for all ij and i.i.d. over time.

The assumption means that any meeting has positive probability (however small) and
the meetings are i.i.d. over time.

ASSUMPTION 2.2. Individuals receive a logistic shock before they decide whether to
form a link (i.i.d. over time and players).

Before deciding whether to form or sever a link, the pair receives a stochastic shock εij
to the surplus generated by the relationship, which models an i.i.d. matching value.
This is a standard assumption in many random utility models. We can now show that
the network formation is a potential game (Monderer and Shapley [1996]).

PROPOSITION 2.3. If assumptions 2.1 and 2.2 hold, then the network formation is
a potential game, and there exists a potential function Qn(g;α, β) that characterizes the
incentives of all the players in any state of the network

Qn(g;α, β) =

n∑
i=1

n∑
j=1

αijgij +
β

2n

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk. (2)

The potential function Qn(g;α, β) is such that, for any gij
Qn(g;α, β)−Qn(g − ij;α, β) = ui(g) + uj(g)− [ui(g − ij) + uj(g − ij)] .

Thus we can keep track of all players’ incentives using the scalar Qn(g;α, β). It is easy
to show that all the pairwise stable (with transfers) networks are the local maxima of

4He and Zheng [2013] use a similar approximation, but they do not provide approximation errors.
5Extensions to directed networks are straightforward (see Mele [2011])
6The normalization of β by n is necessary for the asymptotic analysis.
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the potential function.7 The sequential network formation follows a Glauber dynamics,
therefore converging to a unique stationary distribution.

THEOREM 2.4. In the long run, the model converges to the stationary distribution
πn, defined as

πn(g;α, β) =
exp [Qn(g;α, β)]∑
ω∈G exp [Qn(ω;α, β)]

= exp
{
n2 [Tn(g;α, β)− ψn(α, β)]

}
, (3)

where Tn(g;α, β) = n−2Qn(g;α, β),

ψn(α, β) =
1

n2
log
∑
ω∈G

exp
[
n2Tn(ω;α, β)

]
, (4)

and G := {ω = (ωij)1≤i,j≤n : ωij = ωji ∈ {0, 1}, ωii = 0, 1 ≤ i, j ≤ n}.
The statements in Proposition 2.3 and Theorem 2.4 are straightforward extensions of
Mele [2011]) and Chandrasekhar and Jackson [2014]. Notice that the likelihood (3)
corresponds to an ERGM model with two-stars.

3. VARIATIONAL APPROXIMATIONS

The constant ψn(α, β) in (4) is intractable because it involves a sum over all 2(
n
2) possi-

ble networks with n players. The usual strategy consists of approximating the constant
using an MCMC sampler (Snijders [2002]). At each iteration, a random link gij is se-
lected and it is proposed to swap its value to 1 − gij ; the swap is accepted according
to a Metropolis-Hastings ratio. However, recent work by Bhamidi et al. [2011] has
shown that such a local sampler may have exponentially slow convergence for many
non-trivial parameter vectors.

We propose an alternative estimation method that does not rely on simulations.
Our method consists of finding an approximate likelihood qn(g) that minimizes the
Kullback-Leibler divergence KL(qn|πn) between qn and the true likelihood πn:

KL(qn|πn) =
∑
ω∈G

qn(ω) log

[
qn(ω)

πn(ω;α, β)

]
=
∑
ω∈G

qn(ω) log qn(ω) +
∑
ω∈G

qn(ω)n
2Tn(ω;α, β)−

∑
ω∈G

qn(ω)n
2ψn(α, β) ≥ 0.

With some algebra we obtain

ψn(α, β) ≥ Eq [Tn(ω;α, β)] +
1

n2
H(qn) = L(qn),

where H(qn) = −
∑
ω∈G qn(ω) log qn(ω) is the entropy of distribution qn.

We want to find the best likelihood approximation, so we minimize KL(qn|πn) with
respect to qn, which is equivalent to

ψn(α, β) = sup
qn∈Qn

L(qn) = sup
qn∈Qn

{
Eq [Tn(ω;α, β)] +

1

n2
H(qn)

}
. (5)

In most cases this variational problem has no closed-form solution. The machine learn-
ing literature suggests to restrict the set Qn to find a tractable approximation.8 A pop-

7A network g is pairwise stable with transfers if: (1) gij = 1⇒ ui(g, τ)+uj(g, τ) ≥ ui(g−ij, τ)+uj(g−ij, τ)
and (2) gij = 0⇒ ui(g, τ) + uj(g, τ) ≥ ui(g + ij, τ) + uj(g + ij, τ); where g + ij represents network g with
the addition of link gij and network g − ij represents network g without link gij . See Jackson [2008] for
more details.
8See Wainwright and Jordan [2008], Bishop [2006]
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ular choice for the set Qn is the set of all completely factorized distribution

qn(g) =
∏
i,j

µ
gij
ij (1− µij)1−gij , (6)

where µij = Eq(gij) = Pq(gij = 1). Straightforward algebra shows that the entropy of
qn is additive in each link’s entropy

1

n2
H(qn) = −

1

2n2

n∑
i=1

n∑
j=1

[µij logµij + (1− µij) log(1− µij)] ,

and the expected potential is computed as

Eqn [Tn (ω;α, β)] =

∑
i

∑
j αijµij

n2
+ β

∑
i

∑
j

∑
k µijµjk

2n3
.

The mean-field approximation leads to a lower bound. The maximization problem is
now to find a matrix µ(α, β)

ψn(α, β) ≥ ψMF
n (µ(α, β))

= sup
µ∈[0,1]n2

{∑
i

∑
j αijµij

n2
+ β

∑
i

∑
j

∑
k µijµjk

2n3

− 1

2n2

n∑
i=1

n∑
j=1

[µij logµij + (1− µij) log(1− µij)]
}
.

The maximization can be performed using any global optimization method. The ma-
chine learning literature proposes to use an iterative method that is guaranteed to
converge to a local maximum.9 If we take the first order conditions of the mean-field
problem with respect to each µij we obtain

µij =
exp

[
2αij +

β
n

∑n
k=1 (µjk + µki)

]
1 + exp

[
2αij +

β
n

∑n
k=1 (µjk + µki)

] , i, j = 1, ..., n. (7)

We initialize the matrix µ and iteratively solve (7) for each entry of the matrix. We can
restart the algorithm several times to get a better approximation. Notice that this is
easily parallelizable.

4. ASYMPTOTIC RESULTS
4.1. Convergence of the variational mean-field approximation
In this section we consider the model as n → ∞. We use and extend results from the
graph limits literature,10 large deviations literature for random graphs11 and anal-
ysis of the resulting variational problem.12 Let h be a simple symmetric function
h : [0, 1]2 → [0, 1], and h(x, y) = h(y, x). This function is called a graphon and it is a
representation of an infinite network. We also need a representation of the vector α in
the infinite network. The following assumptions restrict our model to discrete types.

9See Wainwright and Jordan [2008]
10See Lovasz [2012], Borgs et al. [2008]
11See Chatterjee and Varadhan [2011], Chatterjee and Diaconis [2013]
12See Aristoff and Zhu [2014], Radin and Yin [2013] among others.
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ASSUMPTION 4.1. Assume that

αij = α (i/n, j/n) , (8)

where α(x, y) : [0, 1]2 → [0, 1], are deterministic exogenous functions that are symmetric,
i.e., α(x, y) = α(y, x),

We allow finitely many types for the players and therefore α(x, y) is a multipodal
function, that is, they take only finitely many values.13

ASSUMPTION 4.2. Assume that αij take finitely many values. More precisely, αij
takes values α1, . . . , αp and

αij = α` if (i, j) ∈ A`, 1 ≤ ` ≤ p, (9)

where {A`}1≤`≤p is a partition of {(i, j) : 1 ≤ i 6= j ≤ n}.
As a simple example, let us consider only gender: males and females. For example,

half of the nodes (population) are males, say i = 1, 2, . . . , n2 and the other half are
females, i = n

2 + 1, n2 + 2, . . . , n.14 That means, α(x, y) takes three values according to
the three regions: {

(x, y) : 0 < x, y < 1
2

}
, (10){

(x, y) : 1
2 < x, y < 1

}
, (11){

(x, y) : 0 < x < 1
2 < y < 1

}⋃{
(x, y) : 0 < y < 1

2 < x < 1
}
, (12)

and these three regions correspond precisely to pairs: male-male, female-female, and
male-female.
The work of Chatterjee and Diaconis [2013] show that there is a variational problem
analogous to the one shown above for the graph limit. Our extension has a similar
flavor, and the variational problem for the graphon is

ψ(α, β) = sup
h∈W

{∫ 1

0

∫ 1

0

α(x, y)h(x, y)dxdy +
β

2

∫ 1

0

∫ 1

0

∫ 1

0

h(x, y)h(y, z)dxdydz (13)

− 1

2

∫ 1

0

∫ 1

0

[h(x, y) log h(x, y) + (1− h(x, y)) log(1− h(x, y))] dxdy
}
,

whereW := {h : [0, 1]2 → [0, 1], h(x, y) = h(y, x), 0 ≤ x, y ≤ 1}.
For finite n, the variational mean-field approximation contains an error of approxi-

mation. The next result quantifies and provides lower and upper bound to the error of
approximation.

THEOREM 4.3. Under Assumption 4.2 and for fixed network size n, the approxima-
tion error of the variational mean-field problem is bounded as

C3(β)n
−1 ≤ ψn(α, β)− ψMF

n (α, β) ≤ C1(α, β)n
−1/5(log n)1/5 + C2(α, β)n

−1/2, (14)

where C1(α, β), C2(α, β) are constants depending only on α and β and C3(β) is a con-
stant depending only on β.

From Chatterjee and Diaconis [2013] we know that as n → ∞ we have ψn(α, β) →
ψ(α, β). The following proposition shows that for a model with finitely many types the
variational approximation is asymptotically exact.

13If an entry of the vector τi is continuous, we can always transform the variable in a discrete vector using
thresholds.
14Here, we assume without loss of generality that n is an even number.
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PROPOSITION 4.4. Under Assumption 4.1 and 4.2, the mean-field approximation
becomes exact as n→∞

ψMF
n (µ(α, β))→ ψ(α, β). (15)

The proposition states that as n becomes large, we can approximate the exponential
random graph likelihood using a model with independent links (conditional on
finitely many types). This is a very useful result because the latter approximation is
simple and tractable, while the exponential random graph model contains complex
dependence patterns that make estimation computationally expensive.

4.2. A model with homophily
We can also exploit homophily to obtain a tractable approximation. Suppose that there
are M types in the population. The cost of forming links among individuals of the
same group is finite, but there is a large cost of forming links among people of different
groups (potentially infinite). We show that in this case the normalizing constant can
be approximated by solving M independent univariate maximization problems. Let
I(x) := x log x+ (1− x) log(1− x). Then we have

PROPOSITION 4.5. Let 0 = a0 < a1 < · · · < aM = 1 be a given sequence. Assume
that

α(x, y) = αi, if ai−1 < x, y < ai, i = 1, 2, . . . ,M. (16)

and α(x, y) ≤ −K otherwise is a given function. Let ψ(α, β;−K) be the variational
problem for the graphons and ψ(α, β;−∞) = limK→∞ ψ(α, β;−K). Then, we have

ψ(α, β;−∞) =

M∑
i=1

(ai − ai−1)2 sup
0≤x≤1

{
αix+

β

2
x2 − 1

2
I(x)

}
. (17)

Essentially this result means that with extreme homophily, the model can be approx-
imated using a stochastic block model. An equivalent formulation imposes (almost)
perfect segregation through the meeting process by assuming that ρij = 0 if τi 6= τj .

5. CONCLUSIONS
We provided a simple model of sequential network formation that evolves according to
a Glauber dynamics and converges to an exponential random graph in the limit. The
usual estimation strategy for ERGM models consists of using state-of-the-art MCMC
methods to approximate the normalizing constant of the likelihood. However, these
simulations are computationally expensive and may suffer convergence problems.

We propose an alternative method that avoids simulations, and delivers an asymp-
totically exact estimate of the normalizing constant. Extending recent results from
the large deviations literature for random graphs, we show convergence for large n
and we bound the approximation error for fixed n. We also show that we can exploit
homophily to simplify the approximation problem to solving several univariate maxi-
mization problems.

The method proposed here does not suffer the problem of MCMC simulations. In
addition, it is parallelizable and scales well to large networks.
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APPENDIX
Remark A.1. In general, the variational problem for the graphons does not yield a

closed form solution. In the special case β = 0,

ψ(α, 0) = sup
h∈W

{∫∫
[0,1]2

α(x, y)h(x, y)dxdy − 1

2

∫∫
[0,1]2

I(h(x, y))dxdy

}
, (18)

where I(x) := x log x+ (1− x) log(1− x) and it is easy to see that the optimal graphon
h(x, y) is given by

h(x, y) =
e2α(x,y)

e2α(x,y) + 1
, (19)

and therefore,

ψ(α, 0) =
1

2

∫∫
[0,1]2

log(1 + e2α(x,y))dxdy. (20)

A.1. Proof of Theorem 4.3
In this proof we will try to follow closely the notation in Chatterjee and Dembo [2014].
Suppose that f : [0, 1]N → R is twice continuously differentiable in (0, 1)N , so that f
and all its first and second order derivatives extend continuously to the boundary. Let
‖f‖ denote the supremum norm of f : [0, 1]N → R. For each i and j, denote

fi :=
∂f

∂xi
, fij :=

∂2f

∂xi∂xj
, (21)

and let
a := ‖f‖, bi := ‖fi‖, cij := ‖fij‖. (22)

Given ε > 0, D(ε) is the finite subset of RN so that for any x ∈ {0, 1}N , there exists
d = (d1, . . . , dN ) ∈ D(ε) such that

N∑
i=1

(fi(x)− di)2 ≤ Nε2. (23)

Let us define
F := log

∑
x∈{0,1}N

ef(x), (24)

and for any x = (x1, . . . , xN ) ∈ [0, 1]N ,

I(x) :=

N∑
i=1

[xi log xi + (1− xi) log(1− xi)]. (25)

Theorem 1.5. in Chatterjee and Dembo [2014] says the following:

THEOREM A.2 (CHATTERJEE AND DEMBO [2014]). For any ε > 0,

sup
x∈[0,1]N

{f(x)− I(x)} − 1

2

N∑
i=1

cii ≤ F ≤ sup
x∈[0,1]N

{f(x)− I(x)}+ E1 + E2, (26)

where

E1 :=
1

4

(
N

N∑
i=1

b2i

)1/2

ε+ 3Nε+ log |D(ε)|, (27)
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and

E2 := 4
(∑N

i=1(acii + b2i ) +
1
4

∑N
i,j=1(ac

2
ij + bibjcij + 4bicij)

)1/2
(28)

+ 1
4

(∑N
i=1 b

2
i

)1/2 (∑N
i=1 c

2
ii

)1/2
+ 3

∑N
i=1 cii + log 2.

We will use the previous theorem to derive the lower and upper bound of the approx-
imation of the mean-field approximation problem. Notice that in our case the N of the
theorem is the number of links, i.e. N =

(
n
2

)
. Let

Zn :=
∑

xij∈{0,1},xij=xji,1≤i<j≤n

e
∑

1≤i,j≤n αijxij+
β
2n

∑
1≤i,j,k≤n xijxjk , (29)

be the normalizing factor and also define

Ln := sup
xij∈[0,1],xij=xji,1≤i<j≤n

{
1

n2

∑
i,j

αijxij +
β

2n3

∑
i,j,k

xijxjk (30)

− 1

n2

∑
1≤i<j≤n

[xij log xij + (1− xij) log(1− xij)]
}
.

Notice that n−2Zn = ψn and Ln = ψMF
n .

For our model, the function f : [0, 1](
n
2) → R is defined as

f(x) =

n∑
i=1

n∑
j=1

αijxij +
β

2n

n∑
i=1

n∑
j=1

n∑
k=1

xijxjk. (31)

Then, we can compute that, for sufficiently large n,

a = ‖f‖ ≤
n∑
i=1

n∑
j=1

|αij |+
n∑
i=1

n∑
k=1

1

2
|β| (32)

≤ n2
[∫

[0,1]2
|α(x, y)|dxdy + 1

2
|β|+ 1

]
.

Let k ∈ N, and H be a finite simple graph on the vertex set [k] := {1, . . . , k}. Let E be
the set of edges of H and |E| be its cardinality. For a function T : [0, 1](

n
2) → R

T (x) :=
1

nk−2

∑
q∈[n]k

∏
{`,`′}∈E

xq`q`′ , (33)

Chatterjee and Dembo [2014] (Lemma 5.1.) showed that, for any i < j, i′ < j′,∥∥∥∥ ∂T∂xij
∥∥∥∥ ≤ 2|E|, (34)

and ∥∥∥∥ ∂2T

∂xij∂xi′j′

∥∥∥∥ ≤ {4|E|(|E| − 1)n−1 if |{i, j, i′, j′}| = 2 or 3,

4|E|(|E| − 1)n−2 if |{i, j, i′, j′}| = 4.
(35)

Therefore, by (34), we can compute that

b(ij) =

∥∥∥∥ ∂f

∂xij

∥∥∥∥ ≤ 2 sup
0≤x,y≤1

|α(x, y)|+ 2|β|. (36)
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By (35), we can also compute that

c(i,j)(i′j′) =

∥∥∥∥ ∂2f

∂xij∂xi′j′

∥∥∥∥ (37)

≤
{
4|β|n−1 if |{i, j, i′, j′}| = 2 or 3,

4|β|n−2 if |{i, j, i′, j′}| = 4.

Next, we compute that

∂f

∂xij
= 2αij +

∂

∂xij

β

2n

n∑
i=1

n∑
j=1

n∑
k=1

xijxjk. (38)

Let T be defined as

T (x) =
1

n

n∑
i=1

n∑
j=1

n∑
k=1

xijxjk. (39)

Then, we have
∂f

∂xij
= 2αij +

β

2

∂T

∂xij
. (40)

Chatterjee and Dembo [2014] (Lemma 5.2.) showed that for the T defined above, there
exists a set D̃(ε) satisfying the criterion (23) (with f = T ) so that

|D̃(ε)| ≤ exp

{
C̃12

434n

ε4
log

C̃22
434

ε4

}
= exp

{
C1n

ε4
log

C2

ε4

}
, (41)

where Ci = 2434C̃i, i = 1, 2, are universal constants. Let us define

D(ε) :=
{
2α` +

β

2
d : d ∈ D̃(2ε/β), ` = 1, . . . , p

}
. (42)

Hence, D(ε) satisfies the criterion (23) and

|D(ε)| ≤ p|D̃(2ε/β)| ≤ p exp
{
C1β

4n

24ε4
log

C2β
4

24ε4

}
. (43)

Therefore,

E1 =
1

4

(n
2

) ∑
1≤i<j≤n

b2(ij)

1/2

ε+ 3

(
n

2

)
ε+ log |D(ε)| (44)

≤
[
1

4
(2‖α‖∞ + 2|β|) + 3

](
n

2

)
ε+ log p+

C1β
4n

24ε4
log

C2β
4

24ε4

≤ C1(α, β)n
2ε+

C1(α, β)n

ε4
log

C1(α, β)

ε4

= C1(α, β)n
9/5(log n)1/5,

by choosing ε = ( lognn )1/5, where C1(α, β) is a constant depending only on α, β.
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We can also compute that

E2 = 4

( ∑
1≤i<j≤n

(ac(ij)(ij) + b2(ij)) (45)

+
1

4

∑
1≤i<j≤n,1≤i′<j′≤n

(
ac2(ij)(i′j′) + bijbi′j′c(ij)(i′j′) + 4b(ij)c(ij)(i′j′)

))1/2

+
1

4

 ∑
1≤i<j≤n

b2(ij)

1/2 ∑
1≤i<j≤n

c2(ij)(ij)

1/2

+ 3
∑

1≤i<j≤n

c(ij)(ij) + log 2

≤ 4

((
n

2

)(
n

(
‖α‖1 +

1

2
|β|+ 1

)
4|β|+ (2‖α‖∞ + 2|β|)2

)
+

1

4
n2
[
‖α‖1 +

1

2
|β|+ 1

] [(
n

4

)
42|β|2n−4 +

((
n

2

)2

−
(
n

4

))
42|β|2n−2

]

+ (2‖α‖∞ + 2|β|)
(
‖α‖∞
2

+
1

2
|β|+ 1

)
·

[(
n

4

)
4|β|n−2 +

((
n

2

)2

−
(
N

4

))
4|β|n−1

])1/2

+
1

4

(
n

2

)
(2‖α‖∞ + 2|β|)4|β|n−1 + 3

(
n

2

)
4|β|n−1 + log 2

≤ C2(α, β)n
3/2,

where C2(α, β) is a constant depending only on α, β.
Finally, to get lower bound, notice that

1

2

∑
1≤i<j≤n

c(ij)(ij) =
1

2

(
n

2

)
4|β|n−1 ≤ C3(β)n, (46)

where C3(β) is a constant depending only on β.
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A.2. Proof of Proposition 4.5
First, observe that

ψ(α, β;−∞) (47)

= sup
h∈W−

{ M∑
i=1

αi

∫∫
[ai−1,ai]2

h(x, y)dxdy +
β

2

∫ 1

0

∫ 1

0

h(x, y)h(y, z)dxdydz

− 1

2

M∑
i=1

∫∫
[ai−1,ai]2

I(h(x, y))dxdy

}

= sup
h∈W−

{ M∑
i=1

αi

∫∫
[ai−1,ai]2

h(x, y)dxdy +
β

2

M∑
i=1

∫ ai

ai−1

(∫ ai

ai−1

h(x, y)dy

)2

dx

− 1

2

M∑
i=1

∫∫
[ai−1,ai]2

I(h(x, y))dxdy

}

=

M∑
i=1

sup
h:[ai−1,ai]

2→[0,1]
h(x,y)=h(y,x)

{
αi

∫∫
[ai−1,ai]2

h(x, y)dxdy +
β

2

∫ ai

ai−1

(∫ ai

ai−1

h(x, y)dy

)2

dx

− 1

2

∫∫
[ai−1,ai]2

I(h(x, y))dxdy

}
,

where

W− :=

{
h ∈ W : h(x, y) = 0 for any (x, y) /∈

M⋃
i=1

[ai−1, ai]
2

}
. (48)

By taking h to be a constant on [ai−1, ai]
2, it is clear that

ψ(α, β;−∞) ≥
M∑
i=1

(ai − ai−1)2 sup
0≤x≤1

{
αix+

β

2
x2 − 1

2
I(x)

}
. (49)

By Jensen’s inequality

ψ(α, β;−∞) ≤
M∑
i=1

sup
h:[ai−1,ai]

2→[0,1]
h(x,y)=h(y,x)

{
αi

∫ ai

ai−1

(∫ ai

ai−1

h(x, y)dy

)
dx (50)

+
β

2

∫ ai

ai−1

(∫ ai

ai−1

h(x, y)dy

)2

dx

− 1

2
(ai − ai−1)

∫ ai

ai−1

I

(
1

ai − ai−1

∫ ai

ai−1

h(x, y)dy

)
dx

}

≤
M∑
i=1

(ai − ai−1)2 sup
0≤x≤1

{
αix+

β

2
x2 − 1

2
I(x)

}
.
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